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A 3
: Abstract ;
4 ¢
i Analytical results for complex moduli of uniaxially fiber reinforced mat- ;
o i
& 3
E 1 erials made of viscoelastic matrix and elastic fibers are reviewed. A general :
E method is established to predict complex moduli and loss tangents of viscoelas-
738 tic laminates made of uniaxially reinforced laminae. Application of results
S
é ] is demonstrated by two examples of analysis of damping of structural vibrations:
i Attenuation of vibrations in uniaxially reinforced Timoshenko beam and torsional b
R B F
s ¥ E&
- vibrations of laminated cylinder. g
g 2 4
b i )
Y é
LR &
i &
K &7 ;
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o o %
4 3
2 (*) Presented at 8th International Council of the Aerosautical Sciences (ICAS) §
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1, Introduction

The ever increasing use of fiber composites for aero/space structures
requires the deveiopment of rational methods for prediction of their rele-
vant properties within engineering accuracy.

In most current fiber composites the matrix is a polymer such as epoxy.
It is well known that such polymers exhibit the effect of vibration damping.
Therefore such damping effects will alsc occur in comnosites in which the
matrix is polymeric. Since aero/space structures are subjected to severe
vibrational environment and since vibration damping is beneficial, the
quantitative prediction of such damping is of considerable engineering imp-
ortance.

It is of interest to emphasize the unique combination of desirable pro-
perties which are exhibited by fiber composites: Superior strength and
stiffness, low weight and vibration damping. No other materials seem to
possess this many advantages.

In order to handle ghe problem analytically, it is assumed that the
matrix is linearly viscoelastic., Its dynamic viscoelastic properties can
then be characterized in terms of the usual complex moduli of viscoelasticity
which are assumed to be known on the basis of experiments. The fibers are
represented as linear elastic. The composite with such constituents behaves
macroscopically as a linear viscoelastic body which is characterized by

effective complex moduli. There arise three classes of important investi-

gation:
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H (a) Prediction of effective complex moduli of a uniaxially reinforced &
. material on the basis of matrix complex moduli; fiber elastic moduli and in- %
a i K
{ ternal geometrical parameters such as constituent volume fractions, fiber %
b ) 4
g shapes, etc. g
= ;
&; (b) Prediction of the effective complex moduli of a laminate, whose %
i - s . . :
§A L laninae are composed of uniaxially reinforced material, on the basis of the g
S 2
4 uniaxial material effective complex moduli found in (a) aund the laminate 8
B internal geometry. g
é . (e) Viscoelastic vibration analysis of structures made of fiber compo- g
E é
. sites. 3
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2N These different kinds of problems will be discussed consecutively. 3
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2. Complex Moduli of Uniaxially Fiber Reinforced Materials

A general theory of prediction of effective complex moduli of composites
with 1linear viscoel:stic constituents has been given previously [1], [2], [3].
It will here suffice to discuss without proof some results which are pertinent
for the present investigation.

Let the local average strains and stresses in a composite be of oscillatory

nature. Thus:

C.. =g, et
) 1)
(2.1)
o ~ 1wt
g..=0.. e
J 1)

where overbars denote average, 1 = V-1, w is frequency, t is time and latin

A e (RS S5 B A28 M A S W AR e P TR 2 MV TEEGR  p £0 07000 e s aa® s ey s LB

STXE

subscripts range over 1, 2, 3. The effective complex moduli E;jkz of a generally

fata

anisotropic composite are defined by the relation:

SR

5B EAN

~ ~t -~
O35 = Cijra(W)eyy (a)

(2.2)

~

*
Cijxe (W)

n

*R ] ¢
Cijkz(w) + 1 Cijkz(w) {b)

whera superscripis R and I denote real and imaginary parts respectively.
The assumptior is made that the fiber reinforced material under considera-
ticn is macroscopically transversely isotropic with respect to fiber directionm.

Then (2.2a) assuues the form:

R SR LA MR ST s SRl i

SRR
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Ci1 €11 + C12 €22 + C12 €33

Q
"
'

n

Ci2 €11 + Caz €22 + Ca22 £33

Q
N
»N

1

Ci2 €11 + C23 €22 + Ca2z €33

Q
w
w

"

-~ (2.3)
2Cuy <12
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(C22 - C23)E2s
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= where x1 is in fiber direction and x2, x3 are in the transverse plane, Fig. 1.

In another notation, the complex moduli in (2.3) are written:
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Here k is a transverse complex bulk modulus, GT - transverse complex shear
medulus in x2, x3 plane and EA - axial complex shear modulus in planes contain-
ing fiber direction x;. The physical interpretation of n and % is here of

little interest.

e

R A A B A
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Inversion of (2.3) is written in the form:
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b E 2
Ee & 3
L 2 i
4 v v, :
; - A~ T .. 1 .
s C33=- 53— 011 - x— 022 + =— O33 ;,;
b A ET Er 1
g ji
b ~ 2.5 %
2 . &1 (2.5) :
1 slz = e %
: 26A
B ~ 823 §
AZ 523 - 'é-é-—' 5
T E
ki M :
\ ?g €31 = "c"'." %g
A4 264 %
; hegh
; y
F whers EA and ET are complex Youngs' meduli in axial (fiber) direction and %
ws 5
- . . . . ~ o~ . 53
p transverse (to fiber) direction, respectively, and YA and Yy are associated %
< | Z
. complex Poisson's ratios. %
: s

: Establishment of analytical expressions for the various effective

complex meduli listed above in terms of matrix complex moduli, fiber elastie
moduli and phase geometry is based on a correspondence principle [1], [2]
which states: The effective complex modi * of a viscoelastic composite are
obtained by replacemert of phase elastic moduli by phase complex moduli

of a composite with identical phase geometry.

In the usual fiber reinforced materials the following conditions ars
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usually fulfilled with sufficient accuracy
(a) Fibers are by an oxrder of magnitude stiffer than matrix

(b) The matrix is isotropic and is viscoelastic in shear only

(c) The matrix shear loss tangent is not larger than 0.1. Thus:
n_ n
tan 66 = X < 0.1 (2.6)
G
m

Under these conditions the following results have been shown [3]

to be valid.

(d) The imaginary parts of the effective complex moduli, n, T, i,
EA are much smaller than the imaginary parts of the effective shear
moduli 6, Gy, and of E.

(e) To obtain real parts of all effective complex moduli it is
merely necessary to take corresponding expressions for effective elastic
elastic moduli and to replace in them matrix elastic moduli by real
parts of matrix complex moduli.

Some simple general results which are valid under the conditions

1 listed above will now be given:

R AR

T . ST

"
aiieich

YA AP R N B AT B TR

rr it i

EA(tw) = Em(lw) vt Ef Ve
R R
BA(w) = Emow) Vo * Bf Ve
I 1 (2.7
EA(w) = Em(w) Vi )
I ]

E tand
tan GE = -%-- E << tan Gg

BA 1+ Efvf/Emvm

R A
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Here m and f denote matrix and fibers, respectively, and v stands for

oot ] LS ol
R Y
R e ¥t 2

A2

NIATES

volume fraction, tan 65 is the loss tangent for unisxial stressing in fiber

£ VN £ et S0 B LA PIV LT N i 7 G NTer ¥

04
-
S s g 2 P s . S LY s S5 2wt g S ey » s, . 3 P .
R A A R R A T et AR S KO B #10,H AT S T P AN T ot SRS G 0 P St s A M M e 2T ST L & 2 10

direction while tan 6: is the corresponding loss tangent for the isotropic
matrix.

: For axial shear
) 1+ Ve

EA(tm) = Em(tw) T_:'V;

ML, SR S e SR RS AR MR

RY* Vs

G
2l - Ve

Gp(w)
(2.8)

2
-
%
%
128

I 1+ vf

G
ml-Vf

Gy (@)

s
Pt

n
tan GGA = tan GG

o AR R

o b
g

For transverse shear
~ R m
7 = Op tan &
* (2.9)
o m
tan GGT = tan 56

2]
[

An expression for G¥ has been given in [2], [3]. Results for other

complex moduli may also be found in these references.
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3. Complex Moduli of Laminates

. ' '
R '

The laminates to be considerad are composed of plane laminae of

; i '

uniaxially fiber reinforced materials; the direction of reinforcement
; , ”

H [y

being different in each lamina. The laminate is referred to a fixed
. B | \ i

coordinate system Xy, X2, Xs where Xi,%X2 are in the plane of the lami- :

|
nae and xs is normal to it, Fig. 2. The nth lamina in the laminate is :

' 1
referred to a material system of axes %x(n), xg(n), X3 whege'x1(n) is o

normzl to the fibers and x; coincides with the laminate x3. The 'posi-
1 s . ' .

tion of the xx(“), xz[n) system is defined with respect’to ghe X1, X2

i
system by the reinforcement angle '

. n . -
o, =% ™, x) | (3.1)
|
v, ! .
Fundamental assumptions of fiber composite laminate theory'are: (a) Any '
" .
i
lamina can be veplaced by a homosznous material whose properties are the °

0 P T B as 1 A A KO Bare LR AT

effective properties of the uniaxial FRM of which the lamina is made. .
. B \ H
(b) The laminae are in statesof plane stress. o

First an elastic laminate will be’considerqd. The plané siress-strain

. . h]
relations of a lamina referred to its material system of axes xx(n), xz(n’

are then: :

L LM A < . 0 L A DI TN B e Tity B P

v . ;0 3

exx(n) = %—Qn(n) - -E-Q-Ozz(n) : . ' i
A A : ' | &:]

. 2

' k]

-

Y L . 3
Ezz(n)=- E—‘f-on(") . l_ozz(n) (3.2) : %
A Er : BN
P ) I ze(n) ' |
12 26
f A ' t
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uheré:

axial Youngs modulus (in fiber direction)

>
'

associated axial Poisson's ratio

5

transverse Youngs modulus (normal to fibers)
f . Y

GA -~axia1 shear modulus (in x;(“), Xz(n)

plane)

' The inverse of (3.2) is:

(n)

n) n
o1 = C1 811( ’ ¢ Cy2 Gzz( )

! Uzz(“) = C;2 Exx(n) + Ca2 ezz(n) (3.3)
' . Oxz(n) = 2Cuy €12
. where
' E
‘ : Cig = Ciz11 = g
P 1- A2
;oo Ciz = Coszs = AT
] 12 = 1122 = '—'E——';'
1-:Av:
Er
\ (3.4)
' E
_ C22 = Cz222 = z
s ' 1 - Avf\
| Er

Cus = C1212 = GA
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,‘ -1l =

ko In terms of the four index moduli in (3.4), (3.3) can be written
|

B! ccmpactly as:

¥

() ) (n)

%8  =CaBys Sys (3.5)
Y where here and from now on Greck indices range over 1, 2,

4 For the sake of simplicity there will be considered the special

S

j ; group of laminates in which the application of membrane force NaB in the
é piane of the laminate does not induce bending or torsion in the laminae.
% The most important kind of laminate which fulfills this requirement is a
% symmetric laminate. Such a laminate has the property that its middle

? plane is a plane of symmetry for the geometry and elastic moduli of the
i % laminate. The laminate is thus composed of laminae pairs in each of

3 which the laminae are of same thickness, are symmetrically located with
f§‘ respect to the middle plane and have the same elastic properties with

ifi respect to the x;, X2 system.

2

TRETNS

The last condition is most commonly fulfilled by laminae made of
identical material and same reinforcement angle en (3.1), in each pair.

The elastic stress-strain relation of such a laminate is given by

N
- af * -
%8 * ® = CopysSys @

(3.6)
N

* (n)
CuByG -nzl cuBYS tn/h (b)

R ey i UV A 1021

SOTEE e TRl X Ty e 7t 3V RIS S
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where
6&8 - applied average plane stress
saB - average strain
h - laminate thickness

C;BYG - effective elastic moduli of laminate

t, - thickness of nth lamina
X N - number of laminae
%’ (n)
- CGBYG - the laminae elastic moduli (3.4) transformed to the xi1, X2
E system of axes,
:
3 For establishment of the result (3.6) see e,g. [4]. Proof that (3.6)
}% is based on an elasticity solution which is exact in the Saint Venant sense
- for a laminate whuse thickness is small compared to its plane dimensions
g has been given oy B.W., Rosen (unpublished).
ii Let it be now assumed that the laminate is viscoelastic but remains
E: symmetric as described above. The laminate is subjected to oscillatory
. membrane loads
k wt
= N .
;& NaB NaB e (3.7) :
A? The average stresses associated with (3.7) are then: :
3 N N
5 = af _ of wt _ = wt :
;, OGB "Th "k ° = GGB ¢ (3.8) ;
o E
? The strain response of the laminate is j
§ §
j & 4
s ik T SN e s e S0 S iitien s SRS &
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1 4
. £ §
2 & € = e . B
‘ 'l -~ ~ ":i
| The relation between 608 and EaB is written: :
A :
'3 h 4
4 5 =¢* é
2 3
B where C;BYG are the effective complex moduli of the laminate. 3

It follows by the general correspondence principle of [1] which was

quoted above that E;BYG can be expressed in form (3.6b). Thus:

2 A "y 7 W T
g R R e M e LY

N
* (n)z
CaByG (w) =nfl cuBYG (ww) tn/h (3.11)

e %
e vry

The single laminae complex moduli (n)ea876 in (3.11) are interpreted as

o

SR 50

follows: In the material axes x1(n), Xz(n) of the nth lamina the stresses

PP

and strains are:

SRS

(n) _~ (M _wt
°aB = Oug e

(3.22)
(n)

eGB =€

(n) 1wt
aB ¢

The relation between aaB(n) and EaB(n) in (3.12) is of type (3.3-3.4).
Thus:

VPR S G LR AN N A R BT RN Sy T P ¢ S Yol WSIE Dot e R G o T e WL DML P SegA L L A S Rty
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(n)

) o
aB Cags ®

aBys Sys (3.13)

Ql

Cinn1 =Cy; =

Exxzz = Ci2 = — (3.14)

E2222 = a22 = T

Exzxz = Cyy = EA

vhere E s ET’ VA and EA are the effective complex moduli of the uniaxial
material which were discussed in par. 2.
If the complex stress strain relation (3.13) is transformed to the

laminate axes x3, X2 it assumes the form:

(n) &

< Ma (n)~
B c €

BYS ) (3.15)

g
This defines the CGBYG in (3.11).

NENPRA BNl g, o3 Sty . L d
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R By tensor transfcrmation:
(")E.,I; = (n)éll = Exxcos~9n + Ezzsinhen +

+ zégzcoszensinzen + 4E~ucoszensinze

(n)é1xzz = (")Elz = (611 + Ezz)coszensinzen +

A & s ~ 2 s0a2
+ + -
Ci2(cos en sin en) 4Cyucos ens1n en

(“)Ezzzz = (n)Ezz = 51151n“9n + Ezzcos“en +

P 2 2 A 2 22
+ 2 +
Ci12c0s ensin en 4CycOS en51n en

(3.16)
™12 = WE,, = - E;zcossensin o +
. + Ezzcosensin36n + Eu(cos’ensinen - cosensinsen) +

~ 38 oz i3
+ 2Cyu (cos en51n9n - cosens1n en)

(n)ézzxz= (n)Ez» = - Exlcosensin36n +

3 s ind 3
+ + - +
C22¢0s°0_sind sz(COSQnSID 6 cos Gnsinen)

B P St L T A e G

+ 25~»(cosensin’en - cos’ensinen)

e =,

L) T8 L LR S R g e ey

TR
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4

.;'\

3
4
\ n ~ n ~ ~ -~ N
: Mg ., = WE,, = (C11 + C2z)cos?0_sin?e_ -

3 n n
! (3.16
3 ~ . ~ . cont'd
. - 2C;2c05%0_sin?0_ + Cyy(cos26_ - sin®6 )2 )

] n n n n
¥

¥

s rses

)

The preceding developments together with the results for complex modu-

Y

"i 1i of uniaxially fiber reinforced materials define the computation methods

»% of the effective complex moduli of symmetric laminates as expressed by (3.11).

g For practical purposes it is frequently n.cessary to compute the effec-

;é tive complex compliances which are defined as the inverse of (3.11). In

éé matrix notation:

£ C*r«§*=J (3.17)

'% where Ef denotes the effective complex compliance matrix and J is the unit
é matrix. Sevaration of (3.17) into real and imaginary parts yields

1y

: E*R . §*R - 9_*1 o §*I = -J_ (a)

(3.18)

o I T I Ll

) S

i; Great facilitation is achieved if it is noted that in view of (2.6) the 3
| second term in the left side of (3.18a). can be neglected with respect to é

3‘
the first. It then follows: g
e e sRa g (a)

(3.19)
¢ s ()

>
2
-

s
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Thus, once ng and gfl have been computed from (3.11), (3.19) define the
effective complex compliance matrix by simple real matrix operatioms.

‘ Another important simplification is obtained if in the laminate

to each vair with reinforcement angle en and thickness t corresponds

another pair with reinforcement -en and same thickness t. It is then

e

easily realized by the form of (3.16) that gll contributions to (3.11)

; of terms with odd powers of cosb  and sinen cancel mutually. Thus in
: . . < .
: this event the effective complex moduli matrix (3.1i) has the form
p
o —
b, el pl™ S N
3 Ciiny Cii22 0 . Ci1 Ci2 O
S
e ! - o i an ok
k) C* = | Ci122 C2222 0 = Ci2 C22 © (3.20)
o 23 2
4 0 0 Ci212 0 0 Cus
; ~
‘
e and so the laminate is macroscopically orthotropic. The situation just
E:
;Z , described is of frequent practical occurrence. For example a symmetric
: laminate with laminae reinforcement in en = 0,90°, + 45° directions.
A
£
.
s
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2 2
e
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4, Structural Applications

4.1 Free flexural vibrations of a
iiber reinforced beam

As a first example there is considered the case of free flexural vibrations
of a simply supported beam which is uniaxially reinforced in beam axis direction.
The purpose of the investigation is to compare vibration damping due to matrix
viscoelasticity on the basis of the usual theory which neglects the effect of
shear and on the basis of the more refined Timoshenko theory which takes into ac-
count shear as well as rotatory inertia. For isotropic materials, in which the
complex Young's modulus loss taﬁgent and the complex shear modulus loss tangent
are of same order, the added effect of shear and rotatory inertia is small for
vibration modes of low order and for long beams. In the present case, however,
where the axial Young's modulus loss tangent is by an order of magnitude smaller
than that of the axial shear modulus (section 2) the situation is quite different
as will be shown below: |

Considering only the effect of flexure the differential equation of the
freely vibrating beam is:

c’%f;‘;’-+-g~;l;-a0 (a)

(4.1)
b)

S kbR & fam vAE
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!
F
£
{3 where:
4 . by
}~ E, - complex axial Young's modulus 2
o~ “,
S | ¥
; I - moment ef inertia ;
i i A - area of cross sectiocn

p - density

Boundary conditions of free support are:

92w
Wy 33 = 0 = 0,% (4.2)

Conventional viscoelastic vibrations analysis shows that the modes

of vibration are given by

Y T SRS Y R s S B e

IS TR / %
. e A 8 e < VR T TSy A T R TR,
R T AT TR - <

, .. ANX 1 R R

mn(x,t) = Ahszn - exp(-i-wntanﬁet) exp(lwnt)
(4.3) :
E: where A.n is an arbitrary constant and 3
i B S
: 2.2 BN ‘
V‘, (»R = n e R ‘-L (a) k¥
3 n £2 . pA i
£ 4.4 %
b tand" 5%
i< 1 + f f "
'.. § |3 ‘
'if : Emvm
4
H ’ Equ. (4.4b) is a repetition of (2.7d). The results are valid for small
g - enough loss tangents, of orde» (2.6). The attenuation n. is aefined by
g o
2
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Next the same beam is considered in Timosh~nko fashion, with shear
‘ and rotatory inertia. By the correspondence principle for viscoelastic

: vibrations [5], tho elastic Timoshenko beam equation [6] transforms into

Ytk P o mk, $3OF A1 T sad YTl T

KE " 2, ob
2 3%  d%w 2 A, 9w _ kr?p d'w _
Can T Ut ety w00 (49

L azrsn heh €27

where c¢? is given by (4.1b), EA is the axial complex shear modulus (2.8a),

. k is the strength of materials shear shape factor of the section and

: r? = I/A.

) Equ. (4.6) with boundary conditions of simple support admits a solution

I AR AN et I v iy et e n o

; of the form, [6]:

AR

- = nmx 1@t '
"n(x’°) Ansin 2 e n 4.7}

where Gn is a solution of the complex freque..cy equation:

IR T O O RIS A LR RN

, XE 2
clo “- [1+0 22%2(1 + =-éjm 2 ko L g (a)
n n Gp - P Gon M
(4.8) E:
- 0T E
a= ¢ 6)) 5
: 3
The solution of (4.8) is the complex "frequency" %
&
¢ R 1
3 B =8 + 1&n 4.9)
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In the case of small loss tangents of order (2.6) it can be shown by

straightforward calculations that:

R
kE 2 2 4
RZ 2.2 A R kr R* _
¢ at-[lsa 2r2(1 + EE—-)]&n + -ERQ-Qn =0 (a)
A A
(4.10)
R
E, I
R? _ A
¢ = 5 L))
I
@ = (4.11)

R Ry 2, R 22 R, R R® W ,R% 2, 2.R,R
92 (8, kr’p/G,-a *r’kE,/G,)tand - (c" « ' /8 -0 *kr’E,/G,) tané,

2 R2 2 1R 2.2 R,.R
2&n kr p/GA-[lmn Y (1+kEA/GA)]

It is seen that (4.10) is the frequency equation of an elastic
Timoshenko beam in terms of real parts of complex moduli. Its validity is
based on the usual additional assumption that real parts of complex moduli
vary sufficiently slowly with frequency. Once &ﬁ has been computed from
(4.10), @] can be computed from (4.11).

A mostly sufficient accurate approximation for ﬁﬁ is:

R~ R 2 l 2.2 kERA
@ % co *[1 - 3o fr?(1 ¢ R )] (4.12)
A

For slender beams and low modes the first term in each of numerator

and denominator of (4.11) is insignificant reiative to the others. Thus:

MU ¥ AR Ko alelo it G 22 B saaros,
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o lsz

n

2_2,eR /R R? ,qR?
(an T kEA/GA)tanG c* (¢ o /ﬁn )tancSE

. L (4.13)
; 2.2 R, R
? 1+ o °r 1+ kEA/GA)
i
; Substitution of (4.9) into (4.7) results in:
1 R ;

' -0t W't :
¢ .. AMX _n n :
3 wh(x,t) = Ans1n —e o (4.14) :
3 where the attenuation is now: é
|

A = ok (4.15)

n n

To obtain an idea of the relative importance of damping due to shear
and rotatory inertia, the attenuations (4.5) and (4.15) have been compared
f ; for the following case: Beam of rectangular section

% = 40.0" h = 2.0"

Material: Boron fibers, Epoxy matrix

Loy )

vf =y = ,5

i 7oy

E~60x10°psi, EmR-.SxIO‘psi, G, =.185x10°psi

QT ey

m m
tanGE = tanGG = tan&m = ,05

R R

E, = 30.25x 10°psi G, = -544 x 10°psi
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‘ 1
taném v |
tand; = —p— tan§, = tan§ - . : Lo * !

p=1.78 x 107" 2b(mass)/in® .

It has been assumed for simplicity that real parts of complex moduli and
loss tangents are frequency independent. ; l

For the first mode: . ' . ! '

w R = 1480 1/sec

o - |
} Bending only ' '

N = .308 1/sec ) ' i '
&R = 1380 1/sec - :
} . Timoshenko beam

fiy = 4.44 1/sec . . !

It is seen that shear and rotatory inertia have a very small ‘effect on the ,
frequency but increase the attenuation by a factor of i4.4. This example

shows that for damping of viscoelastic'fiber reinforced beams shhar and rota-

tory inertia are of major importance. : ' ‘

\

§
4.2 Forced torsional vibrations of

laminated cylinder.

A thin walled cylinder which is laéinated through its thickness is,built.

in at one edge and 'is subjected to a sinusoidal ?brcing torﬁue gt its ; '
other edge. Each lamina is uniaxially reinforced and has the same material
properties with respect to its m;terialjaxeé. The laminateiis symmetric .

with following lamination scheme; ‘ C ‘

reinforcement in generator direction (axial) - volume fraction A

P Tt

- o at

o LT Rad S W SAY N

A LW T kN

om0 1P et B 4
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) reinforcement in + 6 direction - volume fraction Vo
reinforcement in - 6 direction - volume fraction V.o

v

0 * Voo (4.16)

i

For the purpose of analysis of torsional vibrations, the only effective
~u
laminate property needed is the effective complex shear modulus G;2. It

follows from (3.11) that:

t
PR %

Giz2 = Ci212 = co)cxzxzto/h + (+6)C12xzt#e/h +

(4.17)

*(-e)alzxzt_e/h

where t  is the sum of the thickness of the 6=0 laminae, t o, and t_g - the

sums of the thicknesses of the +6 and -0 laminae, respectively.

Now:
to/h =V, (4.18)

t+e/h = t_e/h = vy

and from the last of (3.16)

. WY T
o) ALS 1L
B A -

(+e)Clzxz = (-G)szxz = (e)szxz = (B)Cnu (4.19)
1 Introduction of (4.18-18) into (4.17) yields
1 ) ' ]
. Gyz & (°)c....v° . z(")c....ve (4.20)

By the iast of (3.16) and from (2.4), (4.20) assumes the form:

Send o VA, aER e o

o, =G 1~ 5 290498 cos?
Giz = Gyv, + [f(mﬁ-ziw.r)sin 26+2G,c0s*20]v, (4.21)

i
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It has been mentioned before (Section 2) that the imaginary parts of
ii,L and k can be neglected with respect to the imaginary parts of éT and
EA for the usual fiber reinforced material. Consequently, the separation of

(4.21) into real and imaginary parts assumes the form: ?

*R R 1, R.,R ..R R . a 5

Gi3 = G, + [3n"+k"-20R465)sin20 + 2Ghcos?26]v, (a)
(4.22)

»

Giz = Gyv_ + (%G%.sinzze + 26,c0s%20)v (b)

95T DD T vt B A tas e 2

In the usual fiber reinforced materials generally

Y R R L E AL ]

1. R.R R _R R
i{n +k-24 +GT) > ZGA

€ 1 .1 I
7 7 GT < ZGA

It follows that the shear loss tangent of the laminate

tand* & o (4.23)

1 has 2 maximum for 6=0 and decreases monotonically to a minimum for 6=45°.

N e N S RN O LAV DRPRC R\ WA 2t e s

On the other hand shear strength is smallest for 6=0 and increases monotoni-

s &
N

g4 cally to a maximum for 0=45°. Therefore, in design for maximum damping it

is necessary to choose the smallest angle 6 which complies with allowable shear

stress.

Let the forcing torque at the edge x;=% be represented as

A SRR R e B S

M= M051nwt
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and let the amplitude of angle of twist ¢ at x,=2 be written Amp (¢).

By standard theory of viscoelastic vibrations with small lcss tangents :
3
[233.’
oM yfsin? (20)+sinh(28) é

4,24

Aup($) = —2 (4.24)

Ja:ﬁ; cos(2a) + cosh (2B)
12

8 = wes”
2c

©
]

density

c

Torsional constant of section

J - Polar moment of inertia of section

61R - equ. (4.22a)
8* - equ. (4.23)

Saiady 2o AR AT AR A TSI ARt 3 e e x

Numerical analysis has been carried out for a laminate composed of boron/

TN

epoxy laminae with both constituent volume fractions equal to ,5. Laminae
fractional volumes in laminate are
v, = .6 Vig = -2 with 6 = 22,50°

Analysis has been performed in followinz stages:

(a) Experimental results for epoxy matrix complex shear modulus and loss

tangent as a function of frequency have been described by an empirical

formula.

S A SV SRR R T B A SR BB R it

A

(b) This formula together with elastic properties of fibers have been used

to compute effective complex moduli of the uniaxially reinforced laminae,

gad e Y, . Syend g S o -
AR S s e P SR vt v it R BB  Ges bR RS -
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| which has been presented.

b ;
2 - 27 . ;
: |
é 7 as a function of frequency. For this purpose results (2.7-9) and other %
) :
5 formulae given in [2,3] have been used. }
2 i
e (c) With the aid of single laminae properties the real and imaginary parts %
E (4.22) of the effective complex shear modulus é{z have been computed as f
f ‘ function of frequency. It should be noted that in the present applica- ?
E tion 1 indicates generator direction of cylinder, and 2 the direction g
i 1 normal to generator and tangent to section contour. %
z 5‘ (d) The results foz G:§ and G?% have been used to compute (4.24) as a func- %
.ﬁ i tion of frequency w. %
i E\ A plot of such results is shown in Fig. 3 for a cylinder of length 2=100 in. %
g g and thin walled circular section. It is seen that the first resonance peak is %
;i E very significaat and may be regarded as an elastic resonance. However, the %
f? § damping of the viscoelastic matrix becomes more effective with higher cxder §
5 4
'i ! resonances, the fourth one being considerably reduced. %
f ; 5. Conclusion %
é It has been shown that complex moduli of uniaxially fiber reinforced %
% materials and of laminates of such materials, consisting of viscoelastic matrix %
E % and elastic fibers can be computed in straight forward fashion. The results %
,? ‘ can be used for analysis of structural vibrations on the basis of available %
i

f theory. %
; : Two structural examples have been given 1o assess the significance of %
% vibration damping. g
% ; Many more other interesting applications can be analyzed by the theory g
.; % 9
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